
Počítačové výpočty v řešení procesního
projektu

použití Excelu, Matlabu a MAPLE

Jan Haidl

VŠCHT Praha

2019



Klasifikace typických úloh PP

I interpolace (extrapolace) dat - časový vývoj veličin, rovnovážná data,
vyhodnocení kinetických parametrů

I řešení soustav lineárních rovnic - bilanční rovnice, numerické aproximace
derivací v diferenciálních rovnicích

I řešení soustav nelineárních rovnic - výpočty patrových kolon, potrubních
linek aj.

I integrace obyčejných diferenciálních rovnic - výměníky tepla, plněné
kolony, trubkové či vsádkové reaktory

I integrace parciálních diferenciálních rovnic - neustálené vedení tepla či
hmoty, dynamika chemických reaktorů



Interpolace dat

Proložení diskrétních dat křivkou:
I libovolnou hladkou (polynom, mocninná funkce, spline) - interpolace

diskrétních dat, popisuje data rovnicemi,usnadňuje výpočet derivací a
integrálů

I odvozenou z fyzikální představy o datech - fyzikálně konzistentní
interpolace, lze opatrně extrapolovat (kubické rovnice,
Clausiova-Clapeyronova rovnice, Arrheniova rovnice atp.)



Lineární regrese
proložení dat přímkou, polynomem:

> xData:=[0, 0.1, 0.2, ...1]:

> yData:=[0, 0.15, 0.27, ...1]:

I možné použít balík with(Statistics) a funkci LinearFit - vyžaduje data
jako vektory (či matice)
> y:=LinearFit([x,xˆ2,xˆ3],Vector(xData),Vector(yData),x)

y := 0.11x + 0.023x2 − 0.0012x3

I případně lze použít balík with(CurveFitting) a funkci LeastSquares
> y:=LeastSquares(xData,yData,x,curve=a*x+b*xˆ2+c*xˆ3)

y := 0.11x + 0.023x2 − 0.0012x3

V MATLABu řešení přeurčené soustavy rovnic

X~p = ~y

» xData=[0, 0.1, 0.2, ...1];

» yData=[0, 0.15, 0.27, ...1];

» X=[xData; xData.ˆ2; xData.ˆ3]’;

» p=X\yData’;

p =
0.11 0.023 -0.0012



Spline

interpolace dat hladkou křivkou, která projde všemi body (oproti regresi dat)
I křivka je množina polynomů konstruovaných mezi zadanými body
I spline stupně 1 je lomená čára mezi body - lineární interpolace => v

hraničních bodech nemá první (ani vyšší) derivaci
I běžně je používána spline stupně 3: kubická - v uzlových bodech má

spojité první derivace
V Maple balík with(CurveFitting) a funkce Spline

> y:=Spline(xData,yData,x);

y :=

 0.012x3 − 0.01x2 + 1.01x x < 0.1
0.31(x − 0.1)3 − 0.12(x − 0.1)2 + 0.21x x < 0.2

...


V Matlabu funkce spline: spočítá a uloží data do objektu, vyhodnocení v bodě
poskytne funkce ppval

» S=spline(xData,yData);

» y=ppval(S,0.2)

y =
0.27



Nelineární regrese

proložení dat obecnou křivkou metodou nejmenších čtverců
V Maple balík with(Statistics) a funkce NonlinearFit

> y:=NonlinearFit(a*x+b*xˆc,xData,yData,x);

y := 1.12x + 3.22x0.177

V Matlabu funkce lsqcurvefit

» F = @(p,x)p(1)*x+p(2)*x.ˆp(3); %definice křivky

» p0 = [1,1,1]; % počáteční odhad parametrů

» p = lsqcurvefit(F,p0,xData,yData)

p =
1.12 3.22 0.177



Řešení soustav lineárních rovnic

I obvykle řešíme soustavy A~x = ~y se čtvercovou maticí
I v Maple řešíme buď soustavu rovnic funkcí solve,

> eq1:=x+y=3:
> eq2:=x-y=-1:
> solve({eq1,eq1});

{x = 1, y = 2}
I nebo maticově zadanou soustavu funkcí LinearSolve z balíku

with(LinearAlgebra)
> A:=Matrix([[1,1],[1,-1]]):
> y:=Vector([3,-1]):
> x:=LinearSolve(A,y);

x :=

[
1
2

]
I v Matlabu mocný operátor \

» A=[1 1;1 -1];
» y=[3 -1]’;
» x=A\y
x =

1
2



I nikdy neřešíme pomocí inverzní matice
I pro opakované řešení soustav s konstantní maticí A a proměnlivou pravou

stranou ~y je výhodné předřešit problém pomocí LUP rozkladu, či QR
rozkladu

> P,L,U:=LUDecomposition(A):

» [L,U,P]=lu(A);

» b=L\(P*y)
b =

3
-4

» x=U\b
x =

1
2

I pro velké problémy - matice 100x100 a větší - můžete výrazně zkrátit dobu
výpočtu určením vhodného pořadí operací:

» (A*A*A)*y; % dvojnásobný součin matic a poté součin matice a
vektoru

2n3 + n2 operací

» A*(A*(A*y)); % trojnásobný součin vektoru s maticí

3n2 operací



Řešení nelineárních rovnic a soustav

- vždy iterativní postup
I rovnice jedné proměnné - jednoduché řešení metodou půlení intervalu
I v Matlabu funkce fzero

» y = @(x)exp(x)-0.5; %inline definice funkce jedné proměnné
» fzero(y,0) %počáteční odhad řešení, x0=0
ans =

-0.6934
I soustavy rovnic - Newtonova metoda - v Maple i Matlabu funkce fsolve
I v Maple lze (bývá potřeba) omezit interval pro jednotlivé proměnné

> fsolve({eq1,eq2},{x,y},{x=-5..5,y=-3..3});
{x = 1, y = 2}

I Matlab vyžaduje definici funkce v anulovaném tvaru a vhodný nástřel
function [y] = myfun(x)

y(1)=x(1)+x(2)-3
y(2)=x(1)-x(2)+1

end
» fsolve(@(x)myfun(x),[0 0])
ans =

1.0000
2.0000



I pro úspěšné řešení je třeba dohlédnout na správný počet a typ řešených
rovnic - nenechávejte řešit duplicitní rovnice!

I metoda fsolve v Maple může vyžadovat rozumné omezení limitů na
proměnné

I řešitelnosti soustav můžete značně pomoci předřešením

> eq1:=xˆ2+y=0: eq2:=x+y=0: fsolve({eq1,eq2});
řeší dvě rovnice pro dvě proměnné

{x = 1.0000, y = −1.0000}
> y:=-xˆ2: eq2:=x+y=0: fsolve({eq2});
řeší jednu rovnici pro jednu proměnnou

{x = 1.0000}
I vyhněte se přiřazovacím rovnicím!, využívejte sekvenční přístup k řešení rovnic

> eq1:=y=-xˆ2:
I velmi silný nástroj - Řešitel - pro řešení nelineárních soustav a optimalizaci nabízí

MS Excel
I úlohy jsou zde vždy definovány jako optimalizační úlohy, tj. úlohy minimalizující

účelovou funkci změnou až 100 parametrů
I na parametry je možno klást omezující podmínky (defaultně je zapnuta

podmínka nezápornosti parametrů)
I umožňuje definovat tzv. Multistart pro obejití lokálního minima
I pro zajištění nalezení optima je vhodné pustit nástroj opakovaně - restart může

překonat lokální minimum



Soustavy diferenciálních rovnic - ODR

I soustavu rovnic libovolného řádu lze převést na soustavu ODR 1. řádu
I řešíme soustavu rovnic

~y ′ = ~f (~x , ~y , ~y ′)

I soustavy lineárních diferenciálních rovnic umíme řešit analyticky
I hledáme ve tvaru

~y(x) =
N∑
i=1

C(x)eλi x

I v Maple pomocí funkce dsolve z balíku with(DETools)
I diferenciální rovnice zadáváme pomocí funkce diff, nebo operátoru D

> ODEs:=D(x)(t)=x(t)-y(t), D(y)(t)=x(t)+y(t):
> ODEs:=diff(x(t),t)=x(t)-y(t), diff(y(t),t)=x(t)+y(t);

ODEs := d
dt x(t) = x(t)− y(t), d

dt y(t) = x(t) + y(t)

> dsolve(ODEs)

{x (t) = et (_C2 cos (t) +_C1 sin (t)) , y (t) = −et (cos (t)_C1 − sin (t)_C2)}
I lze hledat i partikulární řešení

> ICS:=x(0)=1,y(1)=0:
> dsolve(ODEs,ICS);{

x (t) = et
(
cos (t) + sin(1) sin(t)

cos(1)

)
, y (t) = −et

(
cos(t) sin(1)

cos(1) − sin (t)
)}



I v Matlabu lze podobně využít symbolické výpočty pomocí funkcí syms a
dsolve
» syms x(t) y(t);
» odes=[diff(x)=x-y); diff(y)=x+y];
» conds=[x(0)==1,y(1)==0];
» [xS,yS]=dsolve(odes,conds);
xS(t) =

exp(t)*cos(t) + (cos(t - 1)*exp(t))/(2*cos(1)) - (cos(t +
1)*exp(t))/(2*cos(1))

yS(t) =
exp(t)*sin(t) + (sin(t - 1)*exp(t))/(2*cos(1)) - (sin(t +

1)*exp(t))/(2*cos(1))

I soustavy nelineárních rovnic řešíme obvykle numericky
I pro řešení doporučováno použít integraci metodou Runge-Kutta 4. řádu
I v Maple řešeno opět funkcí dsolve s možností numeric
I Maple vrací proceduru, která spočítá požadovanou hodnotu funkce až v

okamžiku zavolání
> sol:=dsolve(ODEs,ICS,numeric);

sol := proc(x_bvp)...endproc
> sol(0.1);
[t = 0.1, x (t) = 1.27148310772961848, y (t) = −1.60226986648556902]



I řešení je možné vykreslit pomocí funkce odeplot z balíku with(plots)
> odeplot(sol,[[t,x(t)],[t,y(t)]],t=0..1);

I případně animovat přidáním parametru frames
> odeplot(sol,[[t,x(t)],[t,y(t)]],t=0..1,frames=40);



I v Matlabu je metoda Runge-Kutta skrytá ve funkci ode45
I soustavu rovnic je třeba definovat jako sloupcovou vektorovou funkci ~y ′ = ~f (t, y)

function dy = odes(t,y)
dy=zeros(2,1);
dy(1)=y(1)-y(2);
dy(2)=y(1)+y(2);

end
I integrace vrací vektor času a matici řešení
I ode45 řeší pouze počáteční úlohu
I řešení úloh s okrajovými podmínkami je možné metodou střelby: kombinace

fsolve a ode45
I syntaxe ode45(@funkce, [tMin;tMax],y0)

» [t,Y]=ode45(@odes,[0;1],[1;-1.5])
I řešení je možné vykreslit pomocí plot

» plot(T,Y)
I metoda si sama volí délku integračního kroku - vektor T je tedy vracen dle

potřeb metody
I chcete-li vyčíslit řešení ve specifikovaných bodech, je možné místo intervalu

[tMin;tMax] vypsat požadované časy [tMin;t1;t2;t3;tMax] či ekvidistantní interval
[tMin:deltaT:tMax]



Soustavy diferenciálních rovnic - PDR

A
∂2u

∂x2 + B
∂2u

∂x∂y
+ C

∂2u

∂y2 + D
∂u

∂x
+ E

∂u

∂y
= f (x , y)

I analytické řešení je známé jen pro velmi omezené spektrum lineárních PDR
(např. Fourierova metoda - viz MCHI)

I v praxi obvykle řešeny numericky
I metody se liší dle typu rovnice

I eliptické: B2 − 4AC < 0 - Laplaceova rovnice, ustálené rozložení teploty
I parabolické: B2 − 4AC = 0 - neustálené vedení tepla, NS rovnice v

laminární oblasti
I hyperbolické: B2 − 4AC > 0 - vlnové rovnice, NS rovnice mimo laminární

oblast
I v Maple funkce z balíku PDETools
I numerické metody řešení jsou založeny na:

I diskretizaci domény - síťování
I diskretizaci rovnic - aproximaci jednotlivých členů lineárními funkcemi
I řešením soustav LAG

I poměrně univerzální metody:
I metoda konečných prvků - FEM
I metoda konečných objemů - FVM



I při řešení neustálených dějů nutné kontrolovat délku časového kroku, při
použití příliš velkého kroku řešení obvykle diverguje

I dobré kritérium sledování délky kroku - Courantovo číslo

Co = ∆t
∑ ui

∆xi
< 1(0.5)

ui - rychlost šíření informace ve směru i , xi - rozměr buňky sítě ve směru i
I v Matlabu pro řešní lineárních problémů v 1D a 2D je dostupný grafický

nástroj: pdetool - poučívá trojúhelníkovou síť a FEM
I pro 3D problémy a neustálené problémy je možné použít Comsol - obvykle FEM,

umí i FVM
I pro ostatní problémy nutné použít sofis


