Hydromechanical processes
Fluids: liquids (almost incompressible)
vapors (below critical temperature)
gases (above critical temperature)
Hydromechanics hydrostatics
hydrodynamics
Continuum T a theoretical model afontinuous mass distributionin spaces

real situation: discrete ditribution of mass Y description by statis

model situation: continuum Y description by di
Continuum model can be us edcerfaip scalengven igjerseatarnyp i ¢ sy st e
vol ume of coparicleofcantmuutV

i 0V must be | arge enough to avoid effects of
i 0V must be small enough compared to the sys

Field of a physical quantity. describes distribution of an intensive propertgjraceandtime
intensive property does not depend on the gidensity, temperature)
extensiveproperty depends on size, it is addit(meass, volume)

In steady state the quantitpes not depend oiime, butmay depend on spacees.g. velocity of steady
state flow in pipe depends on radius

Important quantities for chemical engineering are velocity (v), pressure (p), molar concentration (c),
temperature (t), etc.

Forces acting in a fluid

k2 external i act on volume or mass
§2) internal T act on surfaces

. ” b, . . .
external force perunitmas® —é accel eration (gravitational, <cen

Remark: Newton@lawB™® & @is a special case of momentum balance
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Internal forces
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pressure 1 » acts from outside the system on its boundary

Unit of G, 2?pPaand U is N m

Fluid flow : determined by velocity and pressure fields

- we will considemnidirectional flow, i.e. the vector v becomes scalar v
Volume (volumetric) flow
volume of fluid passing through a chosen cresstion per unit time t

dw

W —
do

velocity v is volume flow per unit area
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Character of the flow (flow pattern)
Laminar flow (at low velocities)
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- filaments are smooth
- in perpendicular direction to the flow only diffusional (=molecular) transport of mass, momentum

and heat occurs
- this transport is slow and can be empirically

Turbulent flow (at high velocities)
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- filaments are wavy Y random oscillations

- flow is complex Y rotation Y eddies (vortices)

- in addition to diffusive transport in the perpendicular direction there is convective transport via
fluid particles much | arger than molecul es > 1

Transition from laminar to turbulent flow

- occurs rather suddenly
- is characterized by Reynolds number

v L a”
Re — —
v e velocity
I e characteristic length (e.g. diameter of a tube)
3 é kinematic viscosity

d é dynamic viscosity’ -



J é density

Re < R@iica Y laminar flow
Re > Reyiicas Y turbulentflow
For a pipe, R&iica = 2300

Structure of turbulent flow
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Newton viscosity law
d
dw

t o -

- viscosity is a macroscopic measure of internal friction (= transport of momentum by diffusion)
- ideal fluid: d O, no internal friction

- Newtonian fluids: d const .

- non-Newtonian fluids: d Jd(U



Mass balance of a flowing fluidi continuity equation

Overall mass balance in a flow system (a pipe):
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inflow + source (=0) = outflow + accumulation (source of overall mass is alwazero!)
a a dd—thec'r ew” LY v é average-sweeltooint,y,] ® édem
continuity equation at steady state
0 "Y” 0 "Y”

continuity equation at steady statenstant density(hold for liquids)
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Energy balance of flowing fluid i Bernoulli equation

Energy E may have different forms, most inportant are:

& ‘ w T internal energy U
; = I work W
E A tz_ i heat Q
. S T kinetic energy 0 -4
I potential energy 0 4 "Qa

Total energy balance (there is no source)
O 0 & © 2o
y Qo

i) flow work (volume work)i net work done by pressure forces as they push the fluid through intput
and output, i.§) ® N ®

i) external mechanical woikdone by stirring, pumping etc., flow of mechanical work is called
powerP



Remark: in closed systems where kinetic and poten
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Assume an adiabatic systet ( 1), then at steady state:
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where
P é input power to the pump

N é output poompeorthefiquib m t he

epump €& specific output power



Efficiency of the pump: - -

Versions of the Bernoulli equation

1) energy form

2) height form
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3) pressure form
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Remarks:
) For ideal fluigs0OY no friction Y e

i) 1 f there i,sp=00 pump Y e
i) 1 f the fluid doegsOadégmfd ow Y v

1
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For v = 0 Bernoulli equation reducesaquation of hydrostatics
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Application of Bernoulli equation to a fluid with internal friction (= real fluid)

We need to be able to express the energy lpdn terms of characteristics of the fluid.



a) for a straight pipe

av
Q =5?(empirical formul a)
& é friction factor (or coefficient)
I é length of the pipe
d e diameter of the pipe
b @ “y é average velocity
adepends on the flow
i laminar flow: _ ?FR e ¢ o rraonst = 64 (for circular crosection)
- whereRe —

- for noncircular crosssectionsQ© Q —

S é ar ea osectionl ow cr os $
s é wetted circumfereil
i turbulent flow (Re >2300)
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U/ dé relative roughness of the pipe

0 € roughness (can be found in tabl
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b) for fittings (= resistances in the pipeline, such as valves, turns, bends, etc.)



0
Q —?h -8l oss coefficient (found in t
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For pipelines with several fittings we have:
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Energy loss during discharge of fluid from container
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On expressing VO:

Correction for a real fluid :

0 QO hO8 discharge(empificakhnt

For a pipeline with no pumps we csolve three kinds of problems:

a) calculation ofp,orp,Y si mpl e use of Bernoul | equation

b) calculation ofv,or v, Y s i edepends on, this must be solved by iterations of a formula
obtained from Bernoul | equation or by KS§8r m8n



from B

c) calculation ofd;ord, Y a gadéepands on Re and thereforedbyi i t er at i ons
equation or graph
Example: )1<\
- given:S=S, 1, p, P 7, 2 /7 {—(:L‘ ) |Z
- calculate: y=v,=v '_’_,_:/__'__J_/ [
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By expressing v from Bernoulli equation we get an iterative formula:
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Transport of fluids by using pumps

Pumps
displacement pumps e.g. piston pumps, rotary pumps

centrifugal pumps’i most common

Power output N can be calculated from Bernoulli equation:
. b .
“w o Low Do

by expressin{f2 , and therQ2
Power input P theni8 ——, where the efficiency p.

Suction + discharge height, cavitation
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Problem is that in point 2 there is a low pressure which can be so low that the liquid starts to evaporate
Y cavitation
Maximum suction height to avoid evaporation can be calculated from Bernoulli equation applied to the
suction branch:
— % - — @ - 0
we set p=p’ & vapor pressure of the liquid(can be found in tables, depends on temperature)
n n v v 0Q
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Example: ff or water at t 3=1FPatleil s s—ms%—|lpn(1z§1 0) if p

Maximum discharge height is given by the construction of the pump

Characteristics of the pipe and the pump
charactestic of the pipeA :

- energy (per unit mass) necessary to provide so that the fluid flows through pipe at
volumetric flow V, i.,eA A & or( (
- A can be calculated from Bernoulli equation (simly A )

- typically: A 0 U o (quadratic form)
charactestic of the pumpA :

- energy (per unit mass), which is provided by pump to the fluid at a diviea. A
A o or( (
- this characteristic must be measured in the pump (cannot be calculated from Bernoulli eq)

At steady statd A o ¢ ( Y working point of the pump,
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Pumps can be combined

- in seriesO B O



- in parallelw B w, 0 w 0 w 0 w O w 0w Eow

Fluid flow through a bed of solids
Application:

- filtration
- heterogeneous reactors
- adsorption and chromatography

Aim is to calculate pressure drop. Bed of solid particles is characterized by:

- random arrangement of particles
- irregular channels within the bed

Properties:

crosssectional area: S

volume of fluid: V;

volume of particles: Vs ‘ \‘,
/

volume of the bed: Ve=hS=Vi+Vg °

surface of particles: As

void fraction (porosity): - — = vol ume

volume fraction of particles: — p -

superficial velocity: v -

interstitial velocity: o - -

specific surface: ®w — p - — forsphered p - —

for nonspherical particleed p - —



Yyé sphericity,sphemeiacalreshadapaonhy

d,é characteristic size (= diamete

Flow in real bed is difficult to describe, therefore we use a model.

Channel model
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We assume that voidaction £ and specific surface{= are the samefor the channels and the real porous
bed. Flow in channel can be described by Bernoulli equation.

whereQ _—
It can be shown thatx —,Q

On substitution:

oMp -Q0 o. p -0 o p -0
Q _— - — —_0Q Q —_ Q
¢ -YQ ¢- T qy- Q ¢~ ¢qy- Q
o , o] p -0
y ” __H
1 = - @
é friction factor in porous bed
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Filtration

separation of solid particles from a suspension on a porous membrane or medium
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pressure difference across cake: i) n n
pressuralifference across medium:  ¥n n n
overall pressure difference: e oyn vy
Filtrationrate 0  — —dd— dd—

Ve é volume of filtrate at given time

OF é volume of filtrate per unit area

Pressure difference is typicalipade by pumps or in centrifuge or by vacuum at the filtrate side
Stages of filtration:

- filtration

- washingof the cake

- removal of the cake

filtration
- continuous (e.gdrum filter )
- discontinuous (e.dilter press)
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Mass balance of a filter

- totalbalance & & & ( Q/u‘\jru»\’\(}«.
- balanceonthesolid 0 & 0 /@u
thus: ' §—> e, g
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Kinetics of filtration
general rate equation o );—"L
.

Vq € driving force = pressure défence
=|ﬁ é resistance of cake medium

alsoro, = 2= 2= = ihe rate is the same in cake and medium)
R N W e qu

The resistance of the ca#@ can be determined by using the equation for pressure drop in porous bed:

we assuméaminar flow _ =

W ¥i
©oa- (o
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where| andf are constants
We introduca)  — and by recalling thai dd— we can write final rate equation for filtration
y y i
dn Yn Yn = 0
d0 Y Y 1 -, Y r'] Y A N
T —
KF can be recalculatgdince R, gy does not change!)
! M k- Mi O Mi-n
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Applications of the rate equation for filtration

- discontinuous filtration
a) U is constant (occurs at the beginning of filtration)
dn 0
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dn

n niq ot m
0 is determined fo¥r att t
b) Yn is constani common case
N9 herell GHiiio
dt 1 0 I -
h n)w o df

/A

enoAn ot om
Remark: lower bound in the integral could be final state of i)

Washing of the cake

- the cake has constant thickness and thus at constant pressure difference the rate of
washing is also constant

pdw dn

) Vd—_'_ d_T wWE €8l 0O
thus the rate equation
an YA " Gisioo
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By integration:
niM n ot =

N
Remark: for a filter press resistancel@ibled: 'Y  ¢Y and ¢ v R | Ry
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Therefore it holds - :
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Continuous filtration

Basic equation at constant pressure difference holds
®n oA o0t m
C

but because the drum is rotating with frequemcde timet is

t —




Therefore -1 AR 0 — T

Sedimentation (settling)
- separation of particles disperse in a medium by an external force
External forces: mostlgravitational, can be also centrifugal, electric or magnetic
Types of dispersions

- suspension: solids in liquid medium

solids in gaseous medium
- mist liquid in gaseous medium
- emulsion liquid in liquid medium

Equipment

- gravitational settlers: vertical low

horizontal flow

— TR ‘(1""'\‘5(’ oSSy
f v yaeu,h‘aﬂr,s :

- rotational settlers: centrifuge
cyclone
- electrostatic or magneticg@ators

Gravitational settling
forces action a particles

- external: Fyé gravitational
- internal: 'O O O
Foo s « Wyl

Newton second law(= momentum balance)
0 0 O ¢ do
a _—
df




L é velocity of the particle
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- balance of forces
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for asphereo “ —,"Y “ —projected arain the direction of the fall
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1™ zp
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0 P ( Eq )

— € drag coefficient

," € densities of particles and fluid

It is conwenient to rewrite Eq. A in a dimensionless form upon introducing:

-  Reynolds numberRe —— —

- Archimedes number.! O

On multiplying Eq. A by— we obtain

T R
Re — ! @ A"l —t;Re
0_

However, the thg coefficient— depends on Re (similarly as the friction factatepends on Re in fluid

fl ow in pipes) and hence this rel atdcoonr rneulsatt iboen sgo

between- andRe) .
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The dimensionless force balaricdd -— R e in particular region reads:

a) Stokes region:

Ar Re Re 2, Ar <3. 6

b) Allen region
Ar Re(1+Re®1)25

0.2 <ome3<6 < pAr < 3.431
c) Newton region
Ar 8 Re
pTI< Rp®d 91w 3pHAITAr En 7. 41
Discussion:
There are two tasks:

- dyis given and we want to find,v
If dy is given then Re can be expresf®em a) or c) and. Re cannot be expressed from b)
and its value must be obtaineditgration

- Vis given and we want to find,d
lteration is required in all three cases (thatjs, ¢ e s t i n¥a Aré& chewvestiRiate
)



We can avoid iteration by introducihgaschenko number

l:) bn

Q_H ” Q! ” ”

This number contains only vu and not dp (unlike, Re&gn:

a) StokesAr x @Ly
c) NewtordAr 1@&tolpy

In Allen region we can usel@ss accurate correlation

b) Allen:dAr p odpL y®
Remark: Terminal velocity of a nonspherical particle can be found by:using

1) dynamical shape factorr accordingtol ¢ U
L € terminal velocity of an equivalent spherical particles having the same volume as
nonspherical particle

: - : o O
e is an empirical function of a factd® & and Ar

a € maximum length of nonspherical particle
a é diameter of equivalent sphericalrpele

Ar is evaluated using dp
2) sphericity T © B
0 é surface area of equivalent spherical particle
0 € surface area of nonspherical particle

0 is found from Ly which is given graphicglas function of Ar and

Design of a settler

Calculation of settling area

First step ignass balancénotation S, F, K as in filtration)

9“4‘“‘“’*“*(‘ 1 eleay ,}Z:'c!m‘g(
S 1 F - total mass balance
e . ML =0 , , ,
e %% fud R R a a a
S - balance on solids
[ = gy a0 a Ul')
a a —
P 3
Then

d) d ”

Remark: Balance on volume can be also used



Settling area:

- settler with vertical flow

condition: the fluid average velocity = — must be equal to the
terminal velocity

0 — 0906 —,where0 —isthe area for settling

- settler with horizontal flow
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condition: settling timef  — must be equal to the mean residence time for the fluid
ff - — thusd6 —

Mixing
- homogenkation of mixtures

- typically mixing is achieved by using a stirrer (= impeller)
- to enhance mixing, baffles are used



