
Hydromechanical processes 

Fluids: liquids (almost incompressible) 

 vapors (below critical temperature) 

 gases (above critical temperature) 

Hydromechanics:  hydrostatics 

   hydrodynamics 

Continuum ï a theoretical model of continuous mass distribution in spaces 

 real situation:  discrete distribution  of mass Ÿ description by statistical mechanics (difficult) 

 model situation: continuum Ÿ description by differential and integral calculus (ñeasyò) 

Continuum model can be used for macroscopic systems Ÿ above certain scale given by elementary 

volume of continuum ŭV = particle of continuum 

ǐ ŭV must be large enough to avoid effects of molecular/atomic fluctuations 

ǐ ŭV must be small enough compared to the system we want to describe 

Field of a physical quantity: describes distribution of an intensive property in space and time 

  intensive property does not depend on the size (density, temperature) 

  extensive property depends on size, it is additive (mass, volume) 

In steady state the quantity does not depend on time, but may depend on space, e.g. velocity of steady 

state flow in pipe depends on radius 

Important quantities for chemical engineering are velocity (v), pressure (p), molar concentration (c), 

temperature (t), etc. 

Forces acting in a fluid 

Ὂᴆ  external ï act on volume or mass 

Ὂᴆ  internal  ï act on surfaces 

external force per unit mass: Ὢᴆ
ᴆ

 é acceleration (gravitational, centrifugal) 

Remark: Newton 2
nd

 law ВὊᴆ άὥᴆ is a special case of momentum balance 
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Internal forces 

 

pressure:  ὴ „ acts from outside the system on its boundary 

Unit of ů, p and Ű is N m
-2
 = Pa 

 

Fluid flow : determined by velocity and pressure fields  

- we will consider unidirectional flow , i.e. the vector v becomes scalar v 

Volume (volumetric) flow 

volume of fluid passing through a chosen cross-section per unit time t 

ὠ
dὠ

dὸ
 

velocity v is volume flow per unit area 
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average (mean) velocity (over the entire cross-section S) 
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Character of the flow (flow pattern) 

Laminar flow (at low velocities) 

 

- filaments are smooth 

- in perpendicular direction to the flow only diffusional (=molecular) transport of mass, momentum 

and heat occurs 

- this transport is slow and can be empirically described Ÿ viscosity 

Turbulent flow (at high velocities) 

 

- filaments are wavy Ÿ random oscillations 

- flow is complex Ÿ rotation Ÿ eddies (vortices) 

- in addition to diffusive transport in the perpendicular direction there is convective transport via 

fluid particles much larger than molecules > ŭV 

Transition from laminar to turbulent flow  

- occurs rather suddenly 

- is characterized by Reynolds number 
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  v é  velocity 

  l é  characteristic length (e.g. diameter of a tube) 

  ɜ é kinematic viscosity 

  ɖ é dynamic viscosity ’  



  ɟ é density 

 

Re  <  Recritical  Ÿ laminar flow 

Re  >  Recritical  Ÿ turbulent flow 

For a pipe, Recritical = 2300 

 

Structure of turbulent flow  

viscosity (explained for a laminar flow) 

 

Newton viscosity law: 
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- viscosity is a macroscopic measure of internal friction (= transport of momentum by diffusion) 

- ideal fluid:   ɖ = 0, no internal friction 

- Newtonian fluids: ɖ = const.  

- non-Newtonian fluids: ɖ = ɖ(Űx)  

 

 



 

 

 

Mass balance of a flowing fluid ï continuity equation 

Overall mass balance in a flow system (a pipe): 

 

 inflow + source (=0) = outflow + accumulation   (source of overall mass is always zero!) 

 ά ά
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d
ȟ where ά ὠ” ὺὛ”;  v é average velocity, S é cross-section, ɟ é density 

continuity equation at steady state: 

ὺὛ” ὺὛ” 

continuity equation at steady state, constant density (hold for liquids): 
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Energy balance of flowing fluid ï Bernoulli equation 

Energy E may have different forms, most inportant are: 

ǐ internal energy   U 

ǐ work    W 

ǐ heat    Q 

ǐ kinetic energy  Ὁ  άὺ 

ǐ potential energy  Ὁ  άὫᾀ 

Total energy balance (there is no source) 
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Work:  

i) flow work (volume work) ï net work done by pressure forces as they push the fluid through intput 

and output, i.e ὴὠ ὴὠ 

ii)  external mechanical work ï done by stirring, pumping etc., flow of mechanical work is called 

power P 



Remark: in closed systems where kinetic and potential energy can be neglected Ÿ 

   ὗ ὡ  or ὗ ὡ ЎὟ 

Assume an adiabatic system (ὗ π), then at steady state: 

Ὗ Ὁ ȟ Ὁ ȟ ὴὠ ὖ  Ὗ Ὁ ȟ Ὁ ȟ ὴὠ 

Assume constant density, ὠ ὠ ὠ, at steady state also ά ά ά. 
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This is Bernoulli equation for a flow of incompressible fluid in a pipe with a pump.  

The energy loss Ὡǋ  is due to friction in the fluid in the pipe and in the pump (dis ſ dissipation ſ loss of 

mechanical energy) 
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Thus the Bernoulli equation can be written as: 
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where 

    P é input power to the pump 

    N é output power from the pump to the liquid 

    epump é specific output power 



Efficiency of the pump:   –  

 

 

Versions of the Bernoulli equation 

1) energy form 
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2) height form 
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3) pressure form 
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Remarks: 

i) For ideal fluids Ÿ no friction Ÿ edis = 0 

ii)  If there is no pump Ÿ epump = 0 

iii)  If the fluid does not flow Ÿ v = 0 Ÿ edis = 0 and epump = 0 

 

For v = 0 Bernoulli equation reduces to equation of hydrostatics: 

 

Ὣᾀ
ὴ

”
Ὣᾀ

ὴ

”
ὧέὲίὸὫᾀ

ὴ

”
 

hydrostatic pressure: ὴ ὴ ”Ὣᾀ ᾀ ”ὫὬ 

 

 

 

Application of Bernoulli equation to a fluid with internal friction (= real fluid) 

We need to be able to express the energy loss edis in terms of characteristics of the fluid. 



a) for a straight pipe 

Ὡ ‗
ὰ

Ὠ

ὺ

ς
 (empirical formula) 

 ɚ  é friction factor (or coefficient) 

 l  é length of the pipe 

 d  é diameter of the pipe 

ὺ ὠ
Ὓ é average velocity 

ɚ depends on the flow 

ǐ laminar flow : ‗
Re
ȟ Re ςσππ, const = 64 (for circular cross-section) 

- where Re  

- for non-circular cross-sections: ὨᴼὨ  

S é area of flow cross-section 

s é wetted circumference 

ǐ turbulent flow (Re >2300) 

- ɚ = ɚ(Re,Ů/d) 

Ů/d  é relative roughness of the pipe material 

Ů é roughness (can be found in tables) 
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b) for fittings (= resistances in the pipeline, such as valves, turns, bends, etc.) 
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Energy loss during discharge of fluid from container 

 

For ideal fluid:  
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ὺὛ ὺὛȟ    ὺȣvelocity of ideal fluid 

On expressing v0: 
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Correction for a real fluid : 

ὺ Õὺ ȟ    Õ ȣ  discharge coefficient (empirical)  

 

For a pipeline with no pumps we can solve three kinds of problems: 

a) calculation of p1 or p2 Ÿ simple use of Bernoulli equation 

b) calculation of v1 or v2 Ÿ since ɚ depends on v, this must be solved by iterations of a formula 

obtained from Bernoulli equation or by K§rm§n number + graph 



c) calculation of d1 or d2 Ÿ again ɚ depends on Re and therefore on d Ÿ iterations from Bernoulli 

equation or graph  

Example:  

- given: S1 = S2, l, p1, p2, z1, z2  

- calculate: v1 = v2 = v  
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By expressing v from Bernoulli equation we get an iterative formula: 

   ὺ  
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estimate v0 Ÿ calculate Re Ÿ ɚ Ÿ using the formula C v1; repeat until ȿ○▪ ○▪ȿ  ‐ 

 

Transport of fluids by using pumps 

Pumps 

- displacement pumps ï e.g. piston pumps, rotary pumps 

- centrifugal pumps ï most common 

Power output N can be calculated from Bernoulli equation: 
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by expressing Ὡ , and then Ὡ  . 

Power input P then is ὖ  , where the efficiency – ρ. 

Suction + discharge height, cavitation 



 

Problem is that in point 2 there is a low pressure which can be so low that the liquid starts to evaporate  

Ÿ cavitation 

Maximum suction height to avoid evaporation can be calculated from Bernoulli equation applied to the 

suction branch: 
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we set p2=p
0
 é vapor pressure of the liquid (can be found in tables, depends on temperature) 
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Example: p
0
 for water at t = 20 C is small (å 0) if p1 = 10

5
 Pa then Ὤ

ϽȢ
ρπ m 

Maximum discharge height is given by the construction of the pump 

 

Characteristics of the pipe and the pump 

characteristic of the pipe Å: 

- energy (per unit mass) necessary to provide so that the fluid flows through pipe at 

volumetric flow V, i.e. Å Å ὠ or ( ( ὠ 

- Å can be calculated from Bernoulli equation (simply Å Å ) 

- typically: Å  ὑ ὑὠ  (quadratic form) 

characteristic of the pump Å:  

- energy (per unit mass), which is provided by pump to the fluid at a given ὠ, i.e. Å

Å ὠ or ( ( ὠ 

- this characteristic must be measured in the pump (cannot be calculated from Bernoulli eq) 

At steady state Å Å or (  (   Ÿ working point of the pump,  

 

Pumps can be combined 

- in series Ὄ ВὌ  



 
- in parallel ὠ  Вὠ, Ὄ ὠ  Ὄ ὠ Ὄ ὠ Ὄ ὠ ὠ Ễὠ  

 

 

Fluid flow through a bed of solids 

Application: 

- filtration 

- heterogeneous reactors 

- adsorption and chromatography 

Aim is to calculate pressure drop. Bed of solid particles is characterized by: 

- random arrangement of particles 

- irregular channels within the bed 

Properties: 

 cross-sectional area:   S 

 volume of fluid:   Vf 

 volume of particles:   VS 

 volume of the bed:  VB=hS=Vf+VS 

 surface of particles:   AS 

 void fraction (porosity):  ‐   = volume fraction of fluid 

volume fraction of particles: ρ ‐ 

superficial velocity:  ὺ  

interstitial velocity:  ὺ  

specific surface:   ὥ ρ ‐ , for spheres ὥ ρ ‐  

    for non-spherical particles ὥ ρ ‐  



    ɣ é sphericity, a measure of non-spherical shape (ɣ < 1) 

    dp é characteristic size (= diameter for sphere) 

Flow in real bed is difficult to describe, therefore we use a model. 

 

Channel model 

 

We assume that void fraction Ⱡ and specific surface ╪ are the same for the channels and the real porous 

bed. Flow in channel can be described by Bernoulli equation. 

ὺ

ς
Ὣᾀ

ὴ

”
 
ὺ

ς
Ὣᾀ

ὴ

”
Ὡ  

ὴ ὴ Ўὴ ”Ὣᾀ ᾀ ”Ὡ  

where Ὡ ‗ . 

It can be shown that: ὺ , Ὠ  
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  ‗ é friction factor in porous bed 
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Filtration  

-  separation of solid particles from a suspension on a porous membrane or medium 

 
pressure difference across cake:   Ўὴ ὴ ὴ  

pressure difference across medium:  Ўὴ ὴ ὴ 

overall pressure difference:   Ўὴ Ўὴ Ўὴ  

 

Filtration rate  ὺ
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VF  é  volume of filtrate at given time 

qF é  volume of filtrate per unit area 

 

Pressure difference is typically made by pumps or in centrifuge or by vacuum at the filtrate side 

Stages of filtration: 

- filtration  

- washing of the cake 

- removal of the cake 

 

filtration  

- continuous (e.g. drum filter )  

- discontinuous (e.g. filter press) 

 
 

Mass balance of a filter 

- total balance ά ά ά   

- balance on the solid άύ ά ύ  

thus: 

  ά ά ρ  or   ὠ ὠ ρ     



 

Kinetics of filtration  

general rate equation: ○╕
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Ў▬╕ é driving force = pressure difference 

╡╕ é resistance of cake + medium 

also: ○╕
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╡╚

Ў▬╜

╡╜

Ў▬╚ Ў▬╜

╡╚ ╡╜
 (the rate is the same in cake and medium) 

The resistance of the cake ╡╚ can be determined by using the equation for pressure drop in porous bed: 
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where ‌ and ‍ are constants. 

We introduce ή  and by recalling that ὺ
d

d
 we can write final rate equation for filtration: 
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KF can be recalculated (since RM qM does not change!): 
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Applications of the rate equation for filtration 

- discontinuous filtration 

a) ὺ is constant (occurs at the beginning of filtration) 
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ή ήή ὑ† π 
ὑ  is determined for Ўὴ at † † 

b) Ўὴ is constant ï common case 
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Remark: lower bound in the integral could be final state of i) 

Washing of the cake 

- the cake has constant thickness and thus at constant pressure difference the rate of 

washing is also constant 
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thus the rate equation 
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since Ὑ ὓ– then ή ὧέὲίὸȢ 

By integration:  
ή ή ή ὑ† π 

Remark: for a filter press resistance is doubled: Ὑ ςὙ  and ‍ ς‍ 

area is halved Ὓ  Ὓᴼήǋ  

Therefore it holds 
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Continuous filtration  

Basic equation at constant pressure difference holds  
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but because the drum is rotating with frequency n, the time † is  

 †   



Therefore   ή ήή ὑ π 

 

Sedimentation (settling) 

- separation of particles disperse in a medium by an external force 

External forces: mostly gravitational, can be also centrifugal, electric or magnetic 

Types of dispersions 

- suspension:  solids in liquid medium 

solids in gaseous medium 

- mist:  liquid in gaseous medium 

- emulsion: liquid in liquid medium 

Equipment 

- gravitational settlers:  vertical flow 

 

horizontal flow 

 
- rotational settlers:  centrifuge 

cyclone 

- electrostatic or magnetic separators 

Gravitational settling 

forces action a particles 

- external: Fg é gravitational  

- internal : Ὂ Ὂ
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Newton second law (= momentum balance) 
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ὺ é velocity of the particle 

 

At steady state 
d

d
π O  ὺ  ὺ  ȣterminal (settling velocity) 

- balance of forces  
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for a sphere ὠ  “ , Ὓ “  projected area in the direction of the fall 
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thus  
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           (Eq. A) 

‒ é drag coefficient 

”, ” é densities of particles and fluid 

 

It is convenient to rewrite Eq. A in a dimensionless form upon introducing: 

- Reynolds number: Re   

- Archimedes number: !Ò   

On multiplying Eq. A by  we obtain 
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However, the drag coefficient ‒ depends on Re (similarly as the friction factor ‗ depends on Re in fluid 

flow in pipes) and hence this relation must be given Ÿ obtained empirically (graph or òcorrelationsò 

between ‒  and Re) . 



The dimensionless force balance !Ò ‒Re in particular region reads: 

a) Stokes region: 

   

Ar Re; Re<0.2, Ar<3.6 

   

b) Allen region 

Ar Re(1+0.125ReȢ )  

0.2 < Re < ρπ; 3.6 < Ar < 3.43Ĭρπ 

c) Newton region 

Ar Ȣ Re 

 ρπ < Re < ρȢυ ρπ; 3.43Ĭρπ < Ar < 7.4Ĭρπ 

Discussion: 

There are two tasks: 

- dp is given and we want to find vu  

If dp is given then Re can be expressed from a) or c) and. Re cannot be expressed from b) 

and its value must be obtained by iteration 

 

- vu is given and we want to find dp 

Iteration is required in all three cases (that is, dp is estimated Ÿ Re Ÿ Ar Ÿ new estimate 

...) 



We can avoid iteration by introducing Lyaschenko number: 
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This number contains only vu and not dp (unlike Re), then:  

a) Stokes: Ar χφȢτ Ly 

c) Newtonȡ Ar πȢπσφ Ly 

In Allen region we can use a less accurate correlation 

b) Allen: ȡ Ar ρσψȢφ LyȢ  

Remark: Terminal velocity of a nonspherical particle can be found by using: 

1) dynamical shape factor •  according to  ὺ • ὺȟ 

ὺȟ é terminal velocity of an equivalent spherical particles having the same volume as  

nonspherical particle 

•  is an empirical function of a factor Ὂ
ὰ
ὰ and Ar 

ὰ é maximum length of nonspherical particle 

ὰ é diameter of equivalent spherical particle 

Ar is evaluated using dp 

2) sphericity ‪  
ὃ
ὃ  

ὃ  é surface area of equivalent spherical particle 

ὃ   é surface area of nonspherical particle 

ὺ is found from Ly which is given graphically as function of Ar and 

 

Design of a settler 

Calculation of settling area 

First step is mass balance (notation S, F, K as in filtration) 

 

- total mass balance 

ά ά ά  

- balance on solids 
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Then  
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Remark: Balance on volume can be also used 



Settling area: 

- settler with vertical flow 

condition: the fluid average velocity ὺ  must be equal to the 

terminal velocity  

ὺ  ὺᴼὃ   , where ὃ   is the area for settling 

- settler with horizontal flow 

-  

condition: settling time †  must be equal to the mean residence time for the fluid 

†Ӷ , thus ὃ   

 

 

 

 

Mixing  

- homogenization of mixtures 

- typically mixing is achieved by using a stirrer (= impeller) 

- to enhance mixing, baffles are used  

 


